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Refraction of waves in excitable media
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Waves in chemically excitable systems can refract when impinging on an interface between regions of
different reaction kinetics and/or diffusion constants. Here we study this process using the thin reaction-zone
limit wherein the dynamics of the system can be reduced to the tracking of the boundaries between quiescent
and excited regions. We show how to derive an integrodifferential equation for the refraction of a single pulse
and we subsequently solve this equation numerically. Our results predict that there can be an oscillatory
recovery to the asymptoti¢far from the interfack pulse; this could be checked by experiments on the
Belousov-Zhabotinskii reactionS1063-651X98)09309-X]

PACS numbd(s): 03.40.Kf

[. INTRODUCTION [14-18. Here we apply these ideas to the refraction prob-
lem.

There has been continuing interest in the propagation of The outline of this work is as follows. First we introduce
nonlinear waves in excitable systems ranging from theour general modeling framework, leading eventually to a
Belousov-Zhabotinskii reactiofil] to cardiac tissue2]. piecewise linear field equation for the recovery field with
While many of the investigations have considered the case dgiPecified boundary conditions on the wave front and wave
a spatially uniform medium, there has been growing interesPack. Specializing the refraction of a single pulse by an in-
in the interaction of these waves with spatial inhomogenel€rface with differing kinetics, we derive an integrodifferen-
ities. The latter is relevant for the initiation of spiral organiz- tial €quation for the pulse shape. This equation can be solved

ing centerg3] and also for the guidance of waves in man-far from the interface, proving Snell's law,
made structuref4].

In this work, we will study the simplest possible spatial ctV cl?
inhomogeneity, that of a planar interface separating two re- sin ¢, - m @
gions of different reaction kinetics. This type of geometry
can easily be created in the Belousov-ZhabotinéBX) re-  for the angles made by the asymptotically straight-line
action by a variety of techniques; perhaps the simplest is thgonts. We can also derive the rate of approach to these so-
use of different illumination levels in a light-sensitive vari- |utions, finding that the pulse in the refractifige., noninci-
ant. There have in fact been some experiments of wave retend part of the medium can have (decaying oscillatory
fraction in such systemf5,6], verifying, for example, that dependence on distance from the interface. Afterwards, we
waves obey Snell's law if one measures the wave propagadescribe and implement a numerical procedure to fully solve
tion directions far above and below the medium interfacethe equation for one choice of parameters. Finally, we sum-
One can also do direct numerical simulations of variougnarize our findings and point out the implications for experi-
reaction-diffusion models for this geometfy]. Finally, a  ments.
recent study by Brazhnik and Tysd8] utilized the kine-
matic approximation 9] to derive the shape of the wave Il. ANALYTICAL FORMULATION
front. Unfortunately, in the presence of diffusion this ap- ) _ )
proximation is ad hoc and cannot reliably predict the detaileq W€ Will consider a general model of a two reaction sys-
response of the pulse to the presence of the interface. At thtgm in the form[19,20)
end, we will return to a discussion of our results versus those
of the kinematical approach as well as versus the published eu= €D, V2u+f(u,v), 2
experimental data.

One general approach to waves in excitable systems :
makes use of the usually large time-scale ratio between the v=eD,V?+g(u,v). (©)
slow recovery process and the excitation rise. This fact al-
lows for the use of singular perturbation the¢ip], which  HereD; andD, are the diffusion constants for two species,
eventually results in the reduction of the problem to that ofu andv, ande is the ratio of their reaction rates. The func-
solving for the motion of the boundariéwave fronts, wave tionsf andg have null clines of the general form indicated
backs between excited and quiescent regions of space. Thig Fig. 1. As discussed above, we are interested in the refrac-
approach has been utilized for calculating the dispersion retion of a pulse as it encountered a discontinuity in material
lationship for waves in the Oregonator model of the BZ re-parameters. This solution steadily propagates with constant
action[11,17 as well as for their stabilitf13]. Also, this  velocity c along thex axis, whereas the discontinuity occurs
idea has proved quite valuable for the study of spiral wavesty=0. Our equations for this case will thus become
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g(u,v)=0
f(u,v)=0

u

FIG. 1. Schematic drawing of the null clines for excitable me-
dium kinetics.

(4)

Ju
62D1VZU+C€8_X+ f(u,v)=0,

D,V + au+ =0
eD,V-v C&X g(u,v)=0.

(5
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FIG. 2. Geometry and discretization for the refraction problem.
The numbers refer to the two different media and— refers to
excited/quiescent. Crosses represent positions where the coordinate
is an unknown to be solved for and the circles represent places
where the governing equation is evaluated.

equation for the back, which, if we use the convention that
the normal vector always points into the quiescent phase,
becomes

It is well known[10] that these equations are decoupled in

the limit of small e. The equation fou in this limit yields
two types of regions of slow variation in whichis algebra-
ically related tov, separated by the regions of fast variation,
which have the width of the order ef *. In the slow regions

u is equal toh,(v) or h_(v), the stable solutions of the

ChteDik=—v(vy). 9
In the slow regions we have the equation
Jdv
6D2V20+05+g(hi(v),v)=0. (10

equationf(u,v)=0; these regions are respectively referredTo make progress, we utilize a piecewise-linear approxima-
to as excited or quiescent. In this language, a propagatingon for g; this has been showii 1,17 to give quantitatively
pulse consists of a finite width region of excited state propareliable results for Oregonator models of the BZ reaction, to

gating through a quiescent medium.

To study the behavior af andv in the transitional region
it is convenient to rescale coordinat€s=x/e, &,=Vle.
From the second equation of the rescaled system

D,Vau+ o +f =0 6
1Veutco s (u,0)=0, (6)
D, V20 + 02 4 eg(U,0) =0 @)
U - € )=
2 § agl g

we find that in this regiom should be equal to some constant
vo. Then, finding a suitable domain wall solution farthat
goes fromh(v) asé;— — to h_(v) as é;—x fixes the
velocity as a function ob . The final familiar result is the
eikonal relationship for the wave front,

Ccht+eDik=v(vy), (8)
wherec,=c sin ¢ is the normal velocity of the wave, which
makes an angle with the x axis, « is the curvature, and
v(v¢) some function of the value of the slow field at the
front, v¢. This function vanishes at some specific vaie

give just one example. Specifically, we tth-.(v),v) equal
*a.—b.(v—0v*). For convenience, we introduce a rescal-
ing of Eq. (10):

C=a61/3\/D_1, x=xe?3 D4,
y=ye?*\D;, (v—v*)=we'" (12)
The equation obtained in this manner is
Do, J -
—V°+a—=-b.|w*ra.=0, (12
D, Ix

whereb=be'. In what follows we takeD,=D;. We fur-
thermore use a linear approximation for the functien
v(v)=v'(©*)(v—v*)=—&yD4(v—v*). This transforms
the eikonal equation to
an-l- K:I§Wf1b (13)

for the wave front and wave back, respectively. Herge
= Sin ¢.

These equations have been used as the starting point for
many studies. Here, we will use this model for refraction,

which is called the stall concentration. There is a similarusing the geometry shown in Fig. 2. We thus assume that we
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have two different media with properties that will be labeledwe can relatg) to its values on the bounding lines of each
by the superscripts 1 and 2. To proceed, we note that theegion
Green function of the homogeneous part of thequation,

«/fi%r*>=f [GLAF—T) ¥ yhAF)

~ & ~ -> - -> -
V2+a—~—b+>Gi’z(r—r’)=5(r—r’) (14

ox —V'GIAr—r" )y
is +axGYAr—r)yrAr)]-n’ ds’, (17
- 1 ~ whereXx is the unit vector in the direction of axes,n’ is
G(r)=— 5=Ko(Atr)e™ («2x, (15)

outward pointing normal to the boundary, amts’ is a dif-
ferential arclength. Formally, each of tiges can be thought
wherer = (}S,), r= |F|, Alti: o?la +B}:’2_ The solution of ©of as a function in all of space, which is precisely zero when

2

Eq. (12) in every region can be written as one leaves the specific region for which it is initially defined.
Let us consider for simplicity the case when the coeffi-
R _ al? cientsBl:*2 are the same everywhere and equabt&e will
w(r)=¢?_;2(r)t~—l’2, (16 discuss how one could treat the more general case in the
b Appendix. This assumption implies that the Green functions

. . are the same everywhere. We can then greatly simplify the
Whgre we recall_that _the |nd|ce'5/—1 arld 1/2 Iabel_ which integrand of Eq(17) by summing over all regions. The fact
region of space is being solved fap.:*(r) are solutions of that the Green's functions are the same allows us to replace
the homogeneous equations in each region, which must ie unknown values ofy and its normal derivative by the
determined such that the functien(r) and its first deriva- known discontinuities in the same quantities. After some al-
tives are continuous everywhere. In standard faslizi], gebra, we obtain the basic result

(a1+al)f +(a2+az)J’ ){_iG(F—F’)+a;<'ﬁ'G(F_F,)ldS,
_ + 4 _ - + + — ’
1t 1 272 an

J S o ~ -
+ (ai—a@f +(a2—al) ——G(r—r)||  dx'=zak*=bw(r), (18
1+ 2t 172" an’ Y0
|
where arrows under integrals show the direction of the nor- a, a,+ta. Aj+Ae M
mal n’ (see Fig. 2 This form of the integral together with B A+ A ~ %n
Egs.(13) and(15) was used for the numerical solution of the v (19

refraction problem; this will be discussed in the next sec-
tions.

a, a,ta. AytAe M|
b b Art+A; “n

1. ASYMPTOTIC ANALYSIS where\ is the width of the pulse. Note that the fact that the
asymptotic pulses far above and far below the interface move
We now proceed to solve this problem numerically. In theat the same velocity: means that Snell's law

last section, we derived an equation that must be satisfied at
every point along the wave front and wave back. The only alV a'?
unknowns in this equation are the actual shapes of these two : =S

° . sin ¢, Sin ¢,
curves; these enter both in the arguments of the various

terms in the integral as well as in the left-hand side of thegoyerns the angles made by these straight-line fronts.
eikonal equation for the field value at the fronts. Now, far For the numerical calculation we need to know how fast
from the discontinuity in the excitable media parameters, thghe exact solution approaches the asymptotic one. This
wave fronts should be straight lines that are just the pulsgnowledge would allow us to cut off our curve discretization
solutions for the single media problems. These can be foundt some finite point, neglecting the difference between the
by directly solving the field equation, leading to the expres-actual and asymptotic solutions when this difference is small
sion enough. To proceed, we consider a small perturbation to the

(20)
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plane pulse solution. The rate of decay of ttlisear per-
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We now proceed to do the perturbative analysis directly

turbation to zero will govern the rate that we want to esti-from the field equations. The base solution of the equation
mate (assuming it is smaller than the rate of decay of the(12), in a tilted system of coordinates with tlgé axes along

nonlocal coupling in the governing equation; see below

the wave back, is

a_ a,+ta. A ,
— =t L-(1-eAMer i x'<0,
b b A+A,
a, a,+a_ Aem M pae A
W={ =~ — 2 2 if  0<x'<\, (21)
b b AL+ A,
a_ a,ta. A ,
ST 2 (-eMMe A x>,
| b b AtA,
whereA; = an/2 +\a?l4+b, Ay=— a,/2+a?/4+b. A small perturbation of this solution would take the form
B ek Tk £ BekoX Tk’ in the left(—) region,
w={ C.ef* k' 4+ C et Tk inthe right(—) region, (22)

Elekxlx’ +kyy' 4 Ezekxzx’ +kyy'

There are also perturbations of the front and the back of the — S1ak, cot ¢p— 51kf,= gB1+B,+G(1—e A2 8]

wave:

5.4’ (on the back

x'= ,
A+ 6,5 (on the fronk

(23

Solving the partial differential equation fav requires that
the wave vectors obey the dispersion relation

K+ KZ+ arky+ anky cot ¢—b=0. (24)
Here ¢ is the angle of the plane pulse solution and the tw
solutions of this equation fdk, were labeleck, andk,, in
Eq. (22).

The unknown constants in Eq®2) and(23) are chosen

o

in the(+) region.

(27)

— Spak, cot p— ko= — £ C,e"

+Coef M+ G(e MM —1) 5],

from the boundary

+a_)/b]AA (A +A,).
These equations must be supplemented by boundary con-

ditions at infinity. The requirement that the perturbed field

equations. Here,G=[(a,

vanishes far in front of the pulse leads to the condition that
Re(kxl sin ¢+k, cos¢)<0 and C,=0. Behind the front,

Re(ky, sin ¢+k, cos¢)>0 andB;=0. We will assume that

so as to satisfy boundary conditions of continuity for thethese inequalities hold and then verify thamposterioriafter
functionw and its first derivatives and the boundary relationsfinding the roots ok, . This then leaves us with a homoge-

(13). This leads to

Bl+ BZZ E1+ E2,

(25
Elekxlk + Ezekxz)\ = Clekxl}\ + Czekxz)\
from the continuity ofw,
G(A1+A2) 61"!‘ Blkx + BZkX = Elkx + Ezkx y
1 2 1 2 (26)

—G(A1+Ay) 85+ Eky %™ + Ek, bt
= Clkxlekﬁ}‘ + Czkxzekxz)\

from the continuity of the first derivatives o¥, and

neous system of six linear equations with six variables. The
modes are then given by demanding that the determinant be
zero. The simplest way to proceed is to fig andC, from

Eg. (25 and remove them from E@26); this gives

E1(ky, —ks,) = G(A1+A2)6:=0, 28

Ee e (ky,— Ky )~ G(A1+Az) 5,=0.

We then findE; and E, from Eq. (28) and remove them
from Eq. (27), obtaining a system of the two linear equa-
tions:
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) Al+A, - integrals over the boundaries of asymptotic solutiboth
—ky—aky cot¢p+GE| - —— ——1+e A28y above and below the medium interfacan integral along the
1 e X axis with different coefficients in the excited and quiescent
A+A, regions, and finally integrals along the parts of the curves
+Gée K 6,=0, that are explicitly determined by our points. Integrals along
Xy "% the asymptotic lineqto infinity) were calculated numeri-
(29 cally; since there is an exponential falloff of the integrand,
ey ALt A, ) this can be done to arbitrary accuracy. The integrals along
Géet Kk ot —ky—aky cot ¢ the (infinitely long) parts of thex axis in the quiescent re-
e gions were transformed to an integral along all the entire
Aj+A, - axis (which can be evaluated analyticallyninus the finite
+G§| — kK, —1l+e Alk) 6,=0. integral between the boundary points of the excited region.
1 2

This is then combined with the original integral over this part
of the axis and evaluated numerically. Integrals along the
curve passing through the points were calculated by thinking
of the curves as composed of straight-line segments connect-
ing the points. This gives an order of approximati©oh?).

In the vicinity of some specific point, all finite integrals were
calculated accurately using the adaptive 8-point Lagrange-

Finally, we derive the relevant equation

[—ki— ak, cot ¢+ G¢

J’_
_Aath, —1+e Ao
Ky, K,

% —k)z,—aky cot p+Gé| — kAliL'sz _1+e—A1)\) Gauss algorithm. I_ntegrals far from the point in question
%1 Kx, were calculated using a fast Simpson scheme.

, Finally, we must describe how we handled the singulari-

| Ge At A ok — 30 ties in the integrand near a specific point at which we are

kxl—kx2 ' evaluating the field. The curve of integration was divided

into three regions; in the regidm—x’|> 1, the integral18)
wherek, —k, =— 2?14 +b— ki_ ak, cot . was evaluated numerically, as discussed above. In the region

Oncek, is determined by the above procedure, we can8<|x_X <1, the integral with the singular part

estimate the distance from the interface at which we can engll27-r)|n|x—x | subtracted from the Green function was cal-
our discretization and use the asymptotic solution. In wha ulated numerically and the singular part was integrated ana-

follows, it is important to note that the sign &f plays an ytically. In the & \_/icinity .Of the point, the integra{18)_ was
important part in the form of the solution. Whenever calculated analytically with accuragy?In 1/c. In detail, the

determined by solving Eq30) have positive real parts, the integralfn-V’'G ds' gives

modes are allowed below the interface, but must be elimi-

nated above the interfadevhere the modes do not naturally

decay. The reverse is true for negative real parts. Finally, 1 bo—

one interesting finding is that these decay constiptsiay ﬁf k ds'+0(h?) = 2 +0(h?), (31)
be complex. This means that the return to the asymptotic

state is hot monotonic but rather is oscillatory. We will see

this explicitly in our numerical solution. This represents awhere h is the distance between points along $heaxes.
new prediction of our analysis. Similarly, the integral of the Green’s function gives

IV. NUMERICAL METHOD

Our procedure is then to solve E@L3) at every dis- 3+ +a- asin ¢8 1+In;—c+ln 2
cretized point. The unknowns in this equation are xheo- 2b eVa?l4+b
ordinates of the points, points which are equally distant
alongy axes with stegh. The distribution of unknowns and 10| &8 Inl) (32)
equations are shown in Fig. 2. Below the interface, the tilt of e)’

the asymptotic line as well as the width of the pulaad an

overall constant of translatiprare fixed by fixinga priori _ o o

the coordinates of the two lower pointthe one with an Where(_: is Euler’_s constant._A remaining difficulty concerns

unfilled circle on the wave back and the point with the samehe points that lie on the intersection of the back the

y on the wave frontand all points below. Above the inter- front) with thex axis. In this pair of points, m_addmon to the

face, the tilts were fixed by giving priori the coordinates of terms already considered, a new term arises of the form

all points above the final two pointsvith the cross on the (¢/2m)(al +a?—a’ —a?)/2b, where ¢ is the angle be-

wave front and crossed circle on the bgcht these final tween they axis and the curve.

points, we impose the equation just on the back. This then Our resultant system of nonlinear equations was solved by

leads to a match in the number of equations versus the nunthe modified Powell hybrid method. The final error of our

ber of unknowns. solution(i.e., the residualis much less than our approxima-
The remaining issue concerns the evaluation of the intetion errors discussed above. In the following section, we

grals appearing in the expression for Eq. (18). There are  present the results of one sample set of parameters.
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FIG. 3. Numerically determined refracted pulse shape with in-

cident faster wave.

V. RESULTS

For our numerical calculation the following parameters
were chosene=0.005,a’ =0.600,a* =0.400,a% =0.625,
a?=0.375 ¢,=m/2.2, £=4.0, b=1.0, D;=D,=1.0.
Equations(19) yield a,;=1.28, \{=12.51, @,,=1.10, \,
=9.25. From Snell's law(20), ¢»=1.01. The total number
of equations for the problertback and front togethgmas

2600. We studied two cases of refraction with a wave inci-
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FIG. 5. Slope of the wave front and wave back vs vertical po-
sition for the case when a faster wave is incident—the wave back is
the one with the wider transition region.

approach rates as calculated using the formulas from the last
section. For this parameter set, we determined that the slow-
est decaying modes h&dote: we have to multiply the decay
rates iny’ by sing to get decay rates iry) k{¥=

—a cot¢=—-0.18 with &,/8;=1 and k{”=0.38 with
8,18,=10"° in the first medium andk{”=0.29 with
8,18, =0.07 andk(?=0.26-0.16 with &,/5,=10""° in

dent from medium 1 to medium 2 and vice versa. For thdhe second medium. Of these modes, the ones with positive

first configurationh=0.14 was chosen, for the secohd
=0.13.

(negative real parts fork, should appear in the approach to
the asymptotic 1D pulse belovabove the material bound-

The refraction patterns we obtained are presented in Fig&'Y-

3 and 4. In Figs. 5 and 6, we plot the slope of the wave front

To compare our numerical findings with this prediction,

and wave back, showing clearly the existence of a finiteWe plot in Figs. 7 and 8 the logarithm of the second deriva-
sized transition region. The transition zone spans the materi&ive of our curves. In the first case studiédg. 7), the wave
boundary, with the overall effect being that the curves refront and wave back in the upper medium show three linear
main everywhere smooth. This is of course a consequence &€, purely decaying exponentiaiegions; the slope in this
diffusion, which disallows any sharp jumps in the wave pro-medium is roughlyk{®= —0.14 and the slope in the lower

file.

medium isk(”=0.29. These agrego the expected level of

We can compare our findings to the expected asymptotic

100 T T T T T T T T
80 -
60 -
40

20

0 50

FIG. 4. Numerically determined refracted pulse shape with in-

cident slower wave.
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FIG. 6. Slope of the wave front and wave back vs vertical po-
sition for the case when a slower wave is incident—the wave back
is the one with the wider transition region.
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0 g ! g g r r g ! ! any modal calculatiorithe lowest available mode has a sig-

: ' ‘ ‘ ‘ ' ' nificantly higher fallofj but instead arises directly via non-
local terms in the governing equation. The smallest such
nonlocal term is due to the contribution to the field of the

integral along thex axis; this falls off ase™ 0Y=g=04V.
This rate agrees with our data.

Injx"(y)l

VI. DISCUSSION

In summary, we have carried out a numerical solution of
the pulse shape for the refraction scenario. We have shown
how one can derive an exact equation for this shape and
thereafter solve for it iteratively. One surprise is that the
return to the asymptotic pulse can occur in an oscillatory
manner, as we have seen explicitly for one of the two cases
4-“1’00 -a|o -slo -4|o -2|o Cli 2|o 4'0 elo alo 100 studied.

Inasmuch as nonlocality is a key ingredient in determin-

FIG. 7. Logarithm of the second derivative of the wave backing the actual shape, one cannot reliably use anything like
(oscillatory and wave frontnonoscillatory curves when the faster the kinematic approach if one desires accurate results. The
wave is incident. The small fluctuations at the left end represent oukinematic approach makes the assumption that curvature is
solution accuracy; the jump at the right end is due to the residuathe only contribution to changing the wave speed inside a
effect of truncating to a finite discretization domain. specific medium(i.e., not on the material interfaceWhen
there is a sharp material discontinuity, however, the slow

accuracy with the aforementioned predictions. The wave Variable concentration field will not equal the respective
back in the bottom medium shows an oscillatory recoveryfixéd point values unless we are sufficiently far from the

these data are consistent with the mck@,@zo.ZGt 0.14. material interface; near the interface, diffusion will lead to a
The reason that this mode does not show up on the wa emical field inhomogeneity and this will directly affect the

front is that the eigenvector for this mode has/s propagation speed via the eikonal equation. That this must be

=10"°. One can show that this ratio would be precisel)f zerothe case can be seen by recognizing th_at the_ fin_ite diffusi(_)n

for the diffusionless limit and hence can be estimated to b yste_m cannot support.the curvatt_Jre d|scon_t|nU|ty _found In
he kinematic construction. And, since the kinematic meth-

e~ (recall that we have taken units with; =D,=1); this ; .
explains its small size and hence the dominance of the nex9d°|°gy has F‘Oth'”g at all to' say abqut the \.N'dth of the
pulse, it certainly cannot predict the width oscillations that

to-leading mode for the wave front. i
emerge from the exact solution.

In the second casg@ig. 8 the wave front and wave back ) .
show only decaying regions. The slope for the wave back in As already mentioned, there has been one experifgnt

the lower medium is consistent with the mdc{é) Finall on wave refraction for the BZ system. Our calculations are in
. X ) y: gualitative agreement with thdow resolution published
the wave front in both media as well as the wave back in th

dium fall at th te. This rate | t ai b hoto, but it is hard to say much more at present. The oscil-
upper medium tafl at the same rate. This rate 1s not given Yatory effect will be difficult to detect by looking directly at

the interfacewithout, say, trying to compute higher deriva-
0 ! ! ! ! f f ! ! ! tives such as the curvatyreand hence higher resolution
: : 5 5 5 : : studies will be needed to look for this predicted phenom-
enon.

Finally, our calculation with parameters chosen somewhat
arbitrarily should be thought of as a proof of principle. One
could carry out a similafalbeit technically more difficult
calculation for the piecewise linear reduction of the Orego-
nator model so as to generate more quantitative predictions
for a BZ system. Although this has not yet been done, our
results regarding the structure of the answer will continue to
be valid for this case as well.

Injx"(y)l

APPENDIX

; . ; ; : : ; . . In the text, we derived the basic equatid) relating the
Mo 0 o0 0 20 o0 20 40 60 80 1o field to its values and its normal derivatives along the various
Y boundaries separating the different regions of our space. For
FIG. 8. Logarithm of the second derivative of the wave backthe case of 'dent'cﬁﬁlt , the equation simplified to the point
(wider curve and wave fron{more narrowwhen a slower wave is Where one could directly obtain the field at the wave front

incident. The small fluctuations at the left and right ends represenaind wave back in terms of known functions integrated over
our solution accuracy. an unknown set of curves. This formulation was the basis of
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our numerical scheme for iteratively determining the wavealong the curve. These are just Efj7) evaluated infinitesi-
front and wave back shapes near the medium interface. mally close to the two sides of the curve. The equation on

In the more general case, we must utilize Efj7) di-  ejther side alone can be thought of as determiningia
relctlx. Given a set of curves, the values of-the functionsso|ying the Dirichlet problem for the fields in the given
14(r) along the front and back are known, since region; requiring that the same functiah determines the

normal derivative of the field for the other side of the bound-
ary is then a nontrivial condition for the curve itself. Note
that the solution constructed in this manner automatically
satisfies the condition that the derivativewfis continuous
and w obeys the eikonal equation. We defipe theas we cross the pulse boundary.

normal derivative along the wave front gg(s)=n,. -V, Finally, we discuss what happens at the media interface.
= _ﬁi.valr/,ﬂ where the normal vectors by definition point Here, not only is the normal derivative unknown, but the
out of the domain and we have used the continuity of thefield value itself is unknown as well. However, the “curve”
normal derivative ofw across the boundary; this equation is now fixed to be thew-axis line. Hence the two unknowns
holds in both medigl and 2. There is another similar defi- per point can be determined by same strategy of evaluating
nition for the wave back functionp,(s). So, there is an EQ.(17) on opposite sides of the boundary. Far enough away
effective doubling of the number of variables since now wefrom the pulse, the field approaches the fixed point value and
must determine not only the shape of the curves but also thieencey—0; this means that again one will have to treat as
auxiliary field ¢ for the pulse boundaries. To match this variables only a finite number of field and normal derivative
doubling, we must have twice as many equations, that is, twealues, as determined by the discretization size as compared

. . at?
w(r)= wi%mrg—;z (A1)

per point to the scale over which the field relaxes.
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