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Refraction of waves in excitable media

Leonid Pechenik and Herbert Levine
Department of Physics, University of California at San Diego, La Jolla, California 92093-0319

~Received 6 January 1998!

Waves in chemically excitable systems can refract when impinging on an interface between regions of
different reaction kinetics and/or diffusion constants. Here we study this process using the thin reaction-zone
limit wherein the dynamics of the system can be reduced to the tracking of the boundaries between quiescent
and excited regions. We show how to derive an integrodifferential equation for the refraction of a single pulse
and we subsequently solve this equation numerically. Our results predict that there can be an oscillatory
recovery to the asymptotic~far from the interface! pulse; this could be checked by experiments on the
Belousov-Zhabotinskii reaction.@S1063-651X~98!09309-X#

PACS number~s!: 03.40.Kf
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I. INTRODUCTION

There has been continuing interest in the propagation
nonlinear waves in excitable systems ranging from
Belousov-Zhabotinskii reaction@1# to cardiac tissue@2#.
While many of the investigations have considered the cas
a spatially uniform medium, there has been growing inter
in the interaction of these waves with spatial inhomoge
ities. The latter is relevant for the initiation of spiral organi
ing centers@3# and also for the guidance of waves in ma
made structures@4#.

In this work, we will study the simplest possible spat
inhomogeneity, that of a planar interface separating two
gions of different reaction kinetics. This type of geome
can easily be created in the Belousov-Zhabotinskii~BZ! re-
action by a variety of techniques; perhaps the simplest is
use of different illumination levels in a light-sensitive var
ant. There have in fact been some experiments of wave
fraction in such systems@5,6#, verifying, for example, that
waves obey Snell’s law if one measures the wave propa
tion directions far above and below the medium interfa
One can also do direct numerical simulations of vario
reaction-diffusion models for this geometry@7#. Finally, a
recent study by Brazhnik and Tyson@8# utilized the kine-
matic approximation@9# to derive the shape of the wav
front. Unfortunately, in the presence of diffusion this a
proximation is ad hoc and cannot reliably predict the deta
response of the pulse to the presence of the interface. A
end, we will return to a discussion of our results versus th
of the kinematical approach as well as versus the publis
experimental data.

One general approach to waves in excitable syste
makes use of the usually large time-scale ratio between
slow recovery process and the excitation rise. This fact
lows for the use of singular perturbation theory@10#, which
eventually results in the reduction of the problem to that
solving for the motion of the boundaries~wave fronts, wave
backs! between excited and quiescent regions of space. T
approach has been utilized for calculating the dispersion
lationship for waves in the Oregonator model of the BZ
action @11,12# as well as for their stability@13#. Also, this
idea has proved quite valuable for the study of spiral wa
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@14–18#. Here we apply these ideas to the refraction pro
lem.

The outline of this work is as follows. First we introduc
our general modeling framework, leading eventually to
piecewise linear field equation for the recovery field w
specified boundary conditions on the wave front and wa
back. Specializing the refraction of a single pulse by an
terface with differing kinetics, we derive an integrodiffere
tial equation for the pulse shape. This equation can be so
far from the interface, proving Snell’s law,

cn
~1!

sin f1
5

cn
~2!

sin f2
, ~1!

for the angles made by the asymptotically straight-li
fronts. We can also derive the rate of approach to these
lutions, finding that the pulse in the refracting~i.e., noninci-
dent! part of the medium can have a~decaying! oscillatory
dependence on distance from the interface. Afterwards,
describe and implement a numerical procedure to fully so
the equation for one choice of parameters. Finally, we su
marize our findings and point out the implications for expe
ments.

II. ANALYTICAL FORMULATION

We will consider a general model of a two reaction sy
tem in the form@19,20#

eu̇5e2D1¹2u1 f ~u,v !, ~2!

v̇5eD2¹2v1g~u,v !. ~3!

HereD1 andD2 are the diffusion constants for two specie
u andv, ande is the ratio of their reaction rates. The fun
tions f andg have null clines of the general form indicate
in Fig. 1. As discussed above, we are interested in the ref
tion of a pulse as it encountered a discontinuity in mate
parameters. This solution steadily propagates with cons
velocity c along thex axis, whereas the discontinuity occu
at y50. Our equations for this case will thus become
2910 © 1998 The American Physical Society
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e2D1¹2u1ce
]u

]x
1 f ~u,v !50, ~4!

eD2¹2v1c
]v
]x

1g~u,v !50. ~5!

It is well known@10# that these equations are decoupled
the limit of small e. The equation foru in this limit yields
two types of regions of slow variation in whichu is algebra-
ically related tov, separated by the regions of fast variatio
which have the width of the order ofe21. In the slow regions
u is equal toh1(v) or h2(v), the stable solutions of the
equationf (u,v)50; these regions are respectively referr
to as excited or quiescent. In this language, a propaga
pulse consists of a finite width region of excited state pro
gating through a quiescent medium.

To study the behavior ofu andv in the transitional region
it is convenient to rescale coordinatesj15x/e, j25y/e.
From the second equation of the rescaled system

D1¹j
2u1c

]u

]j1
1 f ~u,v !50, ~6!

D2¹j
2v1c

]v
]j1

1eg~u,v !50 ~7!

we find that in this regionv should be equal to some consta
v0. Then, finding a suitable domain wall solution foru that
goes fromh1(v) as j1→2` to h2(v) as j1→` fixes the
velocity as a function ofv0. The final familiar result is the
eikonal relationship for the wave front,

cn1eD1k5n~v f !, ~8!

wherecn5c sinf is the normal velocity of the wave, whic
makes an anglef with the x axis, k is the curvature, and
n(v f) some function of the value of the slow field at th
front, v f . This function vanishes at some specific valuev* ,
which is called the stall concentration. There is a simi

FIG. 1. Schematic drawing of the null clines for excitable m
dium kinetics.
,

ng
-

r

equation for the back, which, if we use the convention t
the normal vector always points into the quiescent pha
becomes

cn1eD1k52n~vb!. ~9!

In the slow regions we have the equation

eD2¹2v1c
]v
]x

1g„h6~v !,v…50. ~10!

To make progress, we utilize a piecewise-linear approxim
tion for g; this has been shown@11,12# to give quantitatively
reliable results for Oregonator models of the BZ reaction
give just one example. Specifically, we letg„h6(v),v… equal
6a62b6(v2v* ). For convenience, we introduce a resc
ing of Eq. ~10!:

c5ae1/3AD1, x5 x̃e2/3AD1,

y5 ỹe2/3AD1, ~v2v* !5we1/3. ~11!

The equation obtained in this manner is

S D2

D1
¹̃21a

]

] x̃
2b̃6D w6a650, ~12!

where b̃[be1/3. In what follows we takeD25D1. We fur-
thermore use a linear approximation for the functionn,
n(v)5n8(v* )(v2v* )[2jAD1(v2v* ). This transforms
the eikonal equation to

an1k57jwf ,b ~13!

for the wave front and wave back, respectively. Herean
5a sinf.

These equations have been used as the starting poin
many studies. Here, we will use this model for refractio
using the geometry shown in Fig. 2. We thus assume tha

- FIG. 2. Geometry and discretization for the refraction proble
The numbers refer to the two different media and1/2 refers to
excited/quiescent. Crosses represent positions where the coord
is an unknown to be solved for and the circles represent pla
where the governing equation is evaluated.
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2912 PRE 58LEONID PECHENIK AND HERBERT LEVINE
have two different media with properties that will be label
by the superscripts 1 and 2. To proceed, we note that
Green function of the homogeneous part of thev equation,

S ¹̃21a
]

] x̃
2b̃6D G6

1,2~rW2rW8!5d~rW2rW8! ~14!

is

G~rW !52
1

2p
K0~A6

1,2r !e2 ~a/2!x̃, ~15!

whererW5( x̃,ỹ), r 5urWu, A6
1,25Aa2/41b̃6

1,2. The solution of
Eq. ~12! in every region can be written as

w~rW !5c6
1,2~rW !6

a6
1,2

b̃6
1,2

, ~16!

where we recall that the indices1/2 and 1/2 label which
region of space is being solved for.c6

1,2(rW) are solutions of
the homogeneous equations in each region, which mus
determined such that the functionw(rW) and its first deriva-
tives are continuous everywhere. In standard fashion@21#,
o

e
ec

he
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t
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th
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th
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e

be

we can relatec to its values on the bounding lines of eac
region

c6
1,2~rW !5E @G6

1,2~rW2rW8!¹W 8c6
1,2~rW8!

2¹W 8G6
1,2~rW2rW8!c6

1,2~rW8!

1a x̂G6
1,2~rW2rW8!c6

1,2~rW8!#•n̂8 ds8, ~17!

where x̂ is the unit vector in the direction ofx axes,n8 is
outward pointing normal to the boundary, andds8 is a dif-
ferential arclength. Formally, each of thec ’s can be thought
of as a function in all of space, which is precisely zero wh
one leaves the specific region for which it is initially define

Let us consider for simplicity the case when the coe
cientsb̃6

1,2 are the same everywhere and equal tob̃. We will
discuss how one could treat the more general case in
Appendix. This assumption implies that the Green functio
are the same everywhere. We can then greatly simplify
integrand of Eq.~17! by summing over all regions. The fac
that the Green’s functions are the same allows us to rep
the unknown values ofc and its normal derivative by the
known discontinuities in the same quantities. After some
gebra, we obtain the basic result
S ~a2
1 1a1

1 !E
11→12

1~a2
2 1a1

2 !E
21→22 D F2

]

]n8
G~rW2rW8!1a x̂•n̂8G~rW2rW8!Gds8

1S ~a1
1 2a1

2 !E
11→21

1~a2
2 2a2

1 !E
12→22 D F2

]

]n8
G~rW2rW8!GU

y850

dx86a6
1,25b̃w~rW !, ~18!
he
ove

st
his
n

the
all
the
where arrows under integrals show the direction of the n

mal n̂8 ~see Fig. 2!. This form of the integral together with
Eqs.~13! and~15! was used for the numerical solution of th
refraction problem; this will be discussed in the next s
tions.

III. ASYMPTOTIC ANALYSIS

We now proceed to solve this problem numerically. In t
last section, we derived an equation that must be satisfie
every point along the wave front and wave back. The o
unknowns in this equation are the actual shapes of these
curves; these enter both in the arguments of the var
terms in the integral as well as in the left-hand side of
eikonal equation for the field value at the fronts. Now,
from the discontinuity in the excitable media parameters,
wave fronts should be straight lines that are just the pu
solutions for the single media problems. These can be fo
by directly solving the field equation, leading to the expre
sion
r-

-

at
y
wo
s

e
r
e
e
d
-

2jS a1

b̃
2

a11a2

b̃

A11A2e2lA1

A11A2
D 5an ,

~19!

jS a1

b̃
2

a11a2

b̃

A21A1e2lA2

A11A2
D 5an ,

wherel is the width of the pulse. Note that the fact that t
asymptotic pulses far above and far below the interface m
at the same velocitya means that Snell’s law

an
~1!

sin f1
5

an
~2!

sin f2
~20!

governs the angles made by these straight-line fronts.
For the numerical calculation we need to know how fa

the exact solution approaches the asymptotic one. T
knowledge would allow us to cut off our curve discretizatio
at some finite point, neglecting the difference between
actual and asymptotic solutions when this difference is sm
enough. To proceed, we consider a small perturbation to
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plane pulse solution. The rate of decay of this~linear! per-
turbation to zero will govern the rate that we want to es
mate ~assuming it is smaller than the rate of decay of
nonlocal coupling in the governing equation; see below!.
th

w

he
n

-
e

We now proceed to do the perturbative analysis direc
from the field equations. The base solution of the equat
~12!, in a tilted system of coordinates with they8 axes along
the wave back, is
w55
2

a2

b̃
1

a11a2

b̃

A1

A11A2

~12e2A2l!eA2x8 if x8,0,

a1

b̃
2

a11a2

b̃

A1eA2~x82l!1A2e2A1x8

A11A2

if 0 ,x8,l,

2
a2

b̃
2

a11a2

b̃

A2

A11A2

~12eA1l!e2A1x8 if x8.l,

~21!

whereA15an/21Aan
2/41b̃, A252 an/21Aan

2/41b̃. A small perturbation of this solution would take the form

w̃5H B1ekx1
x81kyy81B2ekx2

x81kyy8 in the left~2 ! region ,

C1ekx1
x81kyy81C2ekx2

x81kyy8 in the right~2 ! region,

E1ekx1
x81kyy81E2ekx2

x81kyy8 in the~1 ! region.

~22!
con-
ld

hat

-
he
t be

a-
There are also perturbations of the front and the back of
wave:

x85H d1ekyy8 ~on the back!

l1d2ekyy8 ~on the front!.
~23!

Solving the partial differential equation forw requires that
the wave vectors obey the dispersion relation

kx
21ky

21ankx1anky cot f2b̃50. ~24!

Heref is the angle of the plane pulse solution and the t
solutions of this equation forkx were labeledkx1

andkx2
in

Eq. ~22!.
The unknown constants in Eqs.~22! and ~23! are chosen

so as to satisfy boundary conditions of continuity for t
functionw and its first derivatives and the boundary relatio
~13!. This leads to

B11B25E11E2 ,
~25!

E1ekx1
l1E2ekx2

l5C1ekx1
l1C2ekx2

l

from the continuity ofw,

G~A11A2!d11B1kx1
1B2kx2

5E1kx1
1E2kx2

,
~26!

2G~A11A2!d21E1kx1
ekx1

l1E2kx2
ekx2

l

5C1kx1
ekx1

l1C2kx2
ekx2

l

from the continuity of the first derivatives ofw, and
e

o

s

2d1aky cot f2d1ky
25j@B11B21G~12e2A2l!d1#,

~27!

2d2aky cot f2d2ky
252j@C1ekx1

l

1C2ekx2
l1G~e2A1l21!d2#,

from the boundary equations. Here,G5 @(a1

1a2)/b̃#A1A2 /(A11A2).
These equations must be supplemented by boundary

ditions at infinity. The requirement that the perturbed fie
vanishes far in front of the pulse leads to the condition t
Re(kx1

sinf1ky cosf),0 and C250. Behind the front,

Re(kx2
sinf1ky cosf).0 andB150. We will assume that

these inequalities hold and then verify thema posterioriafter
finding the roots ofky . This then leaves us with a homoge
neous system of six linear equations with six variables. T
modes are then given by demanding that the determinan
zero. The simplest way to proceed is to findB2 andC1 from
Eq. ~25! and remove them from Eq.~26!; this gives

E1~kx1
2kx2

!2G~A11A2!d150,
~28!

E2ekx2
l~kx2

2kx1
!2G~A11A2!d250.

We then findE1 and E2 from Eq. ~28! and remove them
from Eq. ~27!, obtaining a system of the two linear equ
tions:
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2914 PRE 58LEONID PECHENIK AND HERBERT LEVINE
F2ky
22aky cot f1GjS 2

A11A2

kx1
2kx2

211e2A2lD Gd1

1Gje2kx2
l

A11A2

kx1
2kx2

d250,

~29!

Gjekx1
l

A11A2

kx1
2kx2

d11F2ky
22aky cot f

1GjS 2
A11A2

kx1
2kx2

211e2A1lD Gd250.

Finally, we derive the relevant equation

F2ky
22aky cot f1GjS 2

A11A2

kx1
2kx2

211e2A2lD G
3F2ky

22aky cot f1GjS 2
A11A2

kx1
2kx2

211e2A1lD G
2S Gj

A11A2

kx1
2kx2

D 2

e~kx1
2kx2

!l50, ~30!

wherekx1
2kx2

522Aa2/41b̃2ky
22aky cotf.

Once ky is determined by the above procedure, we c
estimate the distance from the interface at which we can
our discretization and use the asymptotic solution. In w
follows, it is important to note that the sign ofky plays an
important part in the form of the solution. Whenever theky
determined by solving Eq.~30! have positive real parts, th
modes are allowed below the interface, but must be eli
nated above the interface~where the modes do not natural
decay!. The reverse is true for negative real parts. Fina
one interesting finding is that these decay constantsky may
be complex. This means that the return to the asympt
state is not monotonic but rather is oscillatory. We will s
this explicitly in our numerical solution. This represents
new prediction of our analysis.

IV. NUMERICAL METHOD

Our procedure is then to solve Eq.~13! at every dis-
cretized point. The unknowns in this equation are thex co-
ordinates of the points, points which are equally dist
alongy axes with steph. The distribution of unknowns and
equations are shown in Fig. 2. Below the interface, the tilt
the asymptotic line as well as the width of the pulse~and an
overall constant of translation! are fixed by fixinga priori
the coordinates of the two lower points~the one with an
unfilled circle on the wave back and the point with the sa
y on the wave front! and all points below. Above the inter
face, the tilts were fixed by givinga priori the coordinates of
all points above the final two points~with the cross on the
wave front and crossed circle on the back!; at these final
points, we impose the equation just on the back. This t
leads to a match in the number of equations versus the n
ber of unknowns.

The remaining issue concerns the evaluation of the in
grals appearing in the expression forw, Eq. ~18!. There are
n
d
t

i-

,

ic

t

f

e

n
m-

-

integrals over the boundaries of asymptotic solution~both
above and below the medium interface!, an integral along the
x axis with different coefficients in the excited and quiesce
regions, and finally integrals along the parts of the curv
that are explicitly determined by our points. Integrals alo
the asymptotic lines~to infinity! were calculated numeri
cally; since there is an exponential falloff of the integran
this can be done to arbitrary accuracy. The integrals al
the ~infinitely long! parts of thex axis in the quiescent re
gions were transformed to an integral along all the entirx
axis ~which can be evaluated analytically! minus the finite
integral between the boundary points of the excited regi
This is then combined with the original integral over this p
of the axis and evaluated numerically. Integrals along
curve passing through the points were calculated by think
of the curves as composed of straight-line segments conn
ing the points. This gives an order of approximationO(h2).
In the vicinity of some specific point, all finite integrals we
calculated accurately using the adaptive 8-point Lagran
Gauss algorithm. Integrals far from the point in questi
were calculated using a fast Simpson scheme.

Finally, we must describe how we handled the singula
ties in the integrand near a specific point at which we
evaluating the field. The curve of integration was divid
into three regions; in the regionux2x8u.1, the integral~18!
was evaluated numerically, as discussed above. In the re
«,ux2x8u,1, the integral with the singular par
(1/2p)lnux2x8u subtracted from the Green function was ca
culated numerically and the singular part was integrated a
lytically. In the « vicinity of the point, the integral~18! was
calculated analytically with accuracy«3ln 1/«. In detail, the
integralWnW •¹W 8G ds8 gives

1

2pE k ds81O~h2!5
f22f1

2p
1O~h2!, ~31!

where h is the distance between points along they axes.
Similarly, the integral of the Green’s function gives

a11a2

2b̃

a sin f

p
«S 11 ln

1

«Aa2/41b̃
2C1 ln 2D

1OS «3 ln
1

« D , ~32!

whereC is Euler’s constant. A remaining difficulty concern
the points that lie on the intersection of the back~or the
front! with thex axis. In this pair of points, in addition to th
terms already considered, a new term arises of the fo
(f/2p)(a1

1 1a2
2 2a2

1 2a1
2 )/2b̃, where f is the angle be-

tween they axis and the curve.
Our resultant system of nonlinear equations was solved

the modified Powell hybrid method. The final error of o
solution~i.e., the residual! is much less than our approxima
tion errors discussed above. In the following section,
present the results of one sample set of parameters.
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PRE 58 2915REFRACTION OF WAVES IN EXCITABLE MEDIA
V. RESULTS

For our numerical calculation the following paramete
were chosen:e50.005,a1

1 50.600,a2
1 50.400,a1

2 50.625,
a2

2 50.375, f15p/2.2, j54.0, b51.0, D15D251.0.
Equations~19! yield an151.28, l1512.51, a2n51.10, l2
59.25. From Snell’s law~20!, f251.01. The total numbe
of equations for the problem~back and front together! was
2600. We studied two cases of refraction with a wave in
dent from medium 1 to medium 2 and vice versa. For
first configurationh50.14 was chosen, for the secondh
50.13.

The refraction patterns we obtained are presented in F
3 and 4. In Figs. 5 and 6, we plot the slope of the wave fr
and wave back, showing clearly the existence of a fin
sized transition region. The transition zone spans the mat
boundary, with the overall effect being that the curves
main everywhere smooth. This is of course a consequenc
diffusion, which disallows any sharp jumps in the wave p
file.

We can compare our findings to the expected asympt

FIG. 3. Numerically determined refracted pulse shape with
cident faster wave.

FIG. 4. Numerically determined refracted pulse shape with
cident slower wave.
i-
e

s.
t
-
ial
-
of
-

ic

approach rates as calculated using the formulas from the
section. For this parameter set, we determined that the s
est decaying modes had~note: we have to multiply the deca
rates in y8 by sinf to get decay rates iny) ky

(a)5

2a cotf520.18 with d2 /d1 51 and ky
(b)50.38 with

d2 /d1 .1026 in the first medium andky
(c)50.29 with

d2 /d1 50.07 andky
(d)50.2660.16i with d2 /d1 .1025 in

the second medium. Of these modes, the ones with pos
~negative! real parts forky should appear in the approach
the asymptotic 1D pulse below~above! the material bound-
ary.

To compare our numerical findings with this predictio
we plot in Figs. 7 and 8 the logarithm of the second deriv
tive of our curves. In the first case studied~Fig. 7!, the wave
front and wave back in the upper medium show three lin
~i.e., purely decaying exponential! regions; the slope in this
medium is roughlyky

(a)520.14 and the slope in the lowe
medium isky

(c)50.29. These agree~to the expected level o

-

-

FIG. 5. Slope of the wave front and wave back vs vertical p
sition for the case when a faster wave is incident—the wave bac
the one with the wider transition region.

FIG. 6. Slope of the wave front and wave back vs vertical p
sition for the case when a slower wave is incident—the wave b
is the one with the wider transition region.
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2916 PRE 58LEONID PECHENIK AND HERBERT LEVINE
accuracy! with the aforementioned predictions. The wa
back in the bottom medium shows an oscillatory recove
these data are consistent with the modeky

(d)50.2660.16i .
The reason that this mode does not show up on the w
front is that the eigenvector for this mode hasd1 /d2
.1025. One can show that this ratio would be precisely ze
for the diffusionless limit and hence can be estimated to
e2l ~recall that we have taken units withD15D251); this
explains its small size and hence the dominance of the n
to-leading mode for the wave front.

In the second case~Fig. 8! the wave front and wave bac
show only decaying regions. The slope for the wave bac
the lower medium is consistent with the modeky

(b) . Finally,
the wave front in both media as well as the wave back in
upper medium fall at the same rate. This rate is not given

FIG. 7. Logarithm of the second derivative of the wave ba
~oscillatory! and wave front~nonoscillatory! curves when the faste
wave is incident. The small fluctuations at the left end represent
solution accuracy; the jump at the right end is due to the resid
effect of truncating to a finite discretization domain.

FIG. 8. Logarithm of the second derivative of the wave ba
~wider curve! and wave front~more narrow! when a slower wave is
incident. The small fluctuations at the left and right ends repres
our solution accuracy.
;

ve

o
e

xt-
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e
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any modal calculation~the lowest available mode has a si
nificantly higher falloff! but instead arises directly via non
local terms in the governing equation. The smallest su
nonlocal term is due to the contribution to the field of t

integral along thex axis; this falls off ase2Ab̃y5e20.41y.
This rate agrees with our data.

VI. DISCUSSION

In summary, we have carried out a numerical solution
the pulse shape for the refraction scenario. We have sh
how one can derive an exact equation for this shape
thereafter solve for it iteratively. One surprise is that t
return to the asymptotic pulse can occur in an oscillat
manner, as we have seen explicitly for one of the two ca
studied.

Inasmuch as nonlocality is a key ingredient in determ
ing the actual shape, one cannot reliably use anything
the kinematic approach if one desires accurate results.
kinematic approach makes the assumption that curvatur
the only contribution to changing the wave speed insid
specific medium~i.e., not on the material interface!. When
there is a sharp material discontinuity, however, the sl
variable concentration field will not equal the respecti
fixed point values unless we are sufficiently far from t
material interface; near the interface, diffusion will lead to
chemical field inhomogeneity and this will directly affect th
propagation speed via the eikonal equation. That this mus
the case can be seen by recognizing that the finite diffus
system cannot support the curvature discontinuity found
the kinematic construction. And, since the kinematic me
odology has nothing at all to say about the width of t
pulse, it certainly cannot predict the width oscillations th
emerge from the exact solution.

As already mentioned, there has been one experimen@5#
on wave refraction for the BZ system. Our calculations are
qualitative agreement with the~low resolution! published
photo, but it is hard to say much more at present. The os
latory effect will be difficult to detect by looking directly a
the interface~without, say, trying to compute higher deriva
tives such as the curvature!, and hence higher resolutio
studies will be needed to look for this predicted pheno
enon.

Finally, our calculation with parameters chosen somew
arbitrarily should be thought of as a proof of principle. O
could carry out a similar~albeit technically more difficult
calculation! for the piecewise linear reduction of the Oreg
nator model so as to generate more quantitative predict
for a BZ system. Although this has not yet been done,
results regarding the structure of the answer will continue
be valid for this case as well.

APPENDIX

In the text, we derived the basic equation~17! relating the
field to its values and its normal derivatives along the vario
boundaries separating the different regions of our space.
the case of identicalb6

1,2, the equation simplified to the poin
where one could directly obtain the fieldw at the wave front
and wave back in terms of known functions integrated o
an unknown set of curves. This formulation was the basis
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our numerical scheme for iteratively determining the wa
front and wave back shapes near the medium interface.

In the more general case, we must utilize Eq.~17! di-
rectly. Given a set of curves, the values of the functio
c6

1,2(rW) along the front and back are known, since

w~rW !5c6
1,2~rW !6

a6
1,2

b̃6
1,2

~A1!

and w obeys the eikonal equation. We define t
normal derivative along the wave front asf f(s)5n̂1•¹W c1

52n̂2•¹W c2 , where the normal vectors by definition poi
out of the domain and we have used the continuity of
normal derivative ofw across the boundary; this equatio
holds in both media~1 and 2!. There is another similar defi
nition for the wave back functionfb(s). So, there is an
effective doubling of the number of variables since now
must determine not only the shape of the curves but also
auxiliary field f for the pulse boundaries. To match th
doubling, we must have twice as many equations, that is,
per point
c.
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se
e

s

e

he
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along the curve. These are just Eq.~17! evaluated infinitesi-
mally close to the two sides of the curve. The equation
either side alone can be thought of as determiningf via
solving the Dirichlet problem for the fieldc in the given
region; requiring that the same functionf determines the
normal derivative of the field for the other side of the boun
ary is then a nontrivial condition for the curve itself. No
that the solution constructed in this manner automatica
satisfies the condition that the derivative ofw is continuous
as we cross the pulse boundary.

Finally, we discuss what happens at the media interfa
Here, not only is the normal derivative unknown, but t
field value itself is unknown as well. However, the ‘‘curve
is now fixed to be thex-axis line. Hence the two unknown
per point can be determined by same strategy of evalua
Eq. ~17! on opposite sides of the boundary. Far enough aw
from the pulse, the field approaches the fixed point value
hencec→0; this means that again one will have to treat
variables only a finite number of field and normal derivati
values, as determined by the discretization size as comp
to the scale over which the field relaxes.
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